$10^{\text {ème }}$ Colloque Franco-Roumain de Mathématiques Appliquées
August 26-31, 2010, Poitiers

Stochastic variational inequalities with jumps

Adrian Zălinescu
"O. Mayer" Institute of Mathematics Iaşi
e-mail: adrian.zalinescu@googlemail.com

We consider the following equation

$$
d X_{t}+\partial \varphi\left(X_{t}\right)(d t) \ni b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}+\int_{\mathbb{R}^{d} \backslash\{0\}} \gamma\left(X_{t-}, z\right) d \tilde{N}_{t}(d z)
$$

where

- $\partial \varphi$ is the subdifferential of proper, l.s.c., convex function φ;
- W is a Brownian motion;
- \tilde{N} is the compensated measure of a homogeneous Poisson random measure.

Lévy processes

Let (Ω, \mathcal{F}, P) be a complete probability space. A d-dimensional stochastic process $\left(L_{t}\right)_{t \geq 0}$ is called a Lévy process if:

1. it is càdlàg, i.e. $t \mapsto L_{t}$ is right continuous and has finite left limits a.s.;
2. it is stochastically continuous, i.e. $t \mapsto L_{t}$ is continuous in probability;
3. the random variables $L_{t_{0}}, L_{t_{1}}-L_{t_{0}}, \ldots, L_{t_{n}}-L_{t_{n-1}}$ are independent, for every $n \in \mathbb{N}^{*}$ and $0 \leq t_{0}<t_{1}<\cdots<t_{n}$;
4. $L_{t+s}-L_{t}$ has the same law as L_{s}, for every $t, s \geq 0$; in particular, $L_{0}=0$ a.s.

The law of a Lévy process $\left(L_{t}\right)_{t \geq 0}$ is determined by the characteristic exponent of L, i.e. the unique continuous function $\Psi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ such that $\Psi(0)=0$ and

$$
\mathbb{E} \exp \left(i\left\langle\lambda, L_{t}\right\rangle\right)=\exp (-t \Psi(\lambda)), t \geq 0, \lambda \in \mathbb{R}^{d}
$$

By the Lévy-Khintchine formula for infinitely divisible distributions, Ψ has the following form:

$$
\begin{equation*}
\Psi(\lambda)=i\langle a, \lambda\rangle+\frac{1}{2} Q(\lambda)+\int_{\mathbb{R}^{d} \backslash\{0\}}\left(1-e^{i\langle\lambda, x\rangle}+i\langle\lambda, x\rangle \mathbf{1}_{\{|x|<1\}}\right) \nu(d x), \tag{1}
\end{equation*}
$$

where $a \in \mathbb{R}^{d}, Q$ is a positive semi-definite quadratic form on \mathbb{R}^{d}, and ν is a measure on $\mathbb{R}^{d} \backslash\{0\}$ such that

$$
\int\left(1 \wedge|x|^{2}\right) \nu(d x)<+\infty
$$

The measure ν is called the Lévy measure associated to L.
For every function Ψ given by the formula (1), there exists a Lévy process with characteristic exponent Ψ.

Examples:

- if $\Psi(\lambda):=\frac{1}{2}|\lambda|^{2}$, then L is a Brownian motion;
- if $\Psi(\lambda):=c\left(1-\mathrm{e}^{i \lambda}\right)$, then L is a Poisson process of intensity $c>0$;
- A generalization of a Poisson process is the following:

Let $\xi_{1}, \ldots, \xi_{n}, \ldots$ be independent random variables with the same distribution ν on $\mathbb{R}^{d} \backslash\{0\}$, and

$$
S(n):=\xi_{1}+\cdots+\xi_{n}
$$

the corresponding random walk. If $\left(N_{t}\right)_{t \geq 0}$ is a Poisson process of intensity $c>0$, then the process

$$
S \circ N_{t}=\sum_{i=1}^{N_{t}} \xi_{i}
$$

is a Lévy process, called a compound Poisson process with Lévy measure $c \nu$.
The characteristic exponent of $S \circ N_{t}$ is

$$
\psi(\lambda)=c \int_{\mathbb{R}^{d}}\left(1-e^{i\langle\lambda, x\rangle}\right) \nu(d x)
$$

so, every Lévy process with a finite Lévy measure can be represented as the sum of a Brownian motion and an independent compound Poisson process.

Definition. Let ν be a σ-finite measure on \mathbb{R}^{d}. A random measure $N(\omega, d t, d z)$ is a homogeneous Poisson random measure with intensity ν, if:
i) for each $\omega \in \Omega, N(\omega, .,$.$) is a measure on \mathbb{R}_{+} \times \mathbb{R}^{d}$;
ii) for each set $B \in \mathcal{B}\left(\mathbb{R}_{+} \times \mathbb{R}^{d}\right)$ with $(d t \otimes \nu)(B)<+\infty$, the random variable $N(\cdot, B)$ is Poisson with parameter $(d t \otimes \nu)(B)$;
iii) if B_{1}, \ldots, B_{n} are disjoint Borel sets of $\mathbb{R}_{+} \times \mathbb{R}^{d}$, then $N\left(\cdot, B_{1}\right), \ldots, N\left(\cdot, B_{n}\right)$ are independent.

The compensated random measure of N

$$
\tilde{N}(d t, d z):=N(d t, d z)-d t \otimes \nu(d z)
$$

has the property that $t \longmapsto \tilde{N}([0, t], A)$ is a martingale for every $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ with $\nu(A)<+\infty$.

If L is a Lévy process on \mathbb{R}^{d} with Lévy measure ν, then its jump counting measure, defined by

$$
N(t, A):=\sum_{0<s \leq t} \mathbb{1}_{A}\left(\Delta L_{s}\right), t>0, A \in \mathcal{B}\left(\mathbb{R}^{d}\right) \text { with } 0 \notin \bar{A}
$$

is a homogeneous Poisson random measure with intensity ν, and the following holds:

$$
\begin{equation*}
L_{t}=b t+\sigma W_{t}+\int_{\{|z|<1\}} z \tilde{N}_{t}(d z)+\int_{\{|z| \geq 1\}} z N_{t}(d z) \tag{2}
\end{equation*}
$$

where $b \in \mathbb{R}^{d}, \sigma \in \mathbb{R}^{d \times d}$, and W is a Brownian motion independent of N.

Jump-diffusions

Jump-diffusions are generalizations of SDEs driven by Lévy processes. Let (Ω, \mathcal{F}, P) be a complete probability space endowed with a right-continuous, complete filtration $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$, W a d^{\prime}-dimensional \mathbb{F}-Brownian motion, and N a Poisson random measure with intensity ν, \mathbb{F}-adapted and independent of W. Let us consider $b: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times d^{\prime}}$, $\gamma: \mathbb{R}^{n} \times\left(\mathbb{R}^{d} \backslash\{0\}\right) \rightarrow \mathbb{R}^{n}$ satisfying the following assumptions:
(H1) b and σ are Lipschitz functions;
(H2) γ is a measurable function with

$$
\int|\gamma(0, z)|^{2} \nu(d z)<+\infty \text { and } \int\left|\gamma(x, z)-\gamma\left(x^{\prime}, z\right)\right|^{2} \nu(d z) \leq L\left|x-x^{\prime}\right|^{2}
$$

Theorem (Gihman, Skorohod, 1972). Under the above assumptions, equation

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}+\int_{\mathbb{R}^{d} \backslash\{0\}} \gamma\left(X_{t-}, z\right) d \tilde{N}_{t}(d z)
$$

has a unique solution starting at $\xi \in L^{2}\left(\Omega, \mathcal{F}_{0}, P\right)$.

Reflected jump-diffusions

Let O be an open, convex and bounded subset of \mathbb{R}^{n}. Under assumptions (H1),
(H2) for every $p \geq 2$, we have

$$
\int|\gamma(0, z)|^{p} \nu(d z) \leq C_{p} \text { and } \int\left|\gamma(x, z)-\gamma\left(x^{\prime}, z\right)\right|^{p} \nu(d z) \leq C_{p}\left|x-x^{\prime}\right|^{p} .
$$

and
(H3) $x+\gamma(x, z) \in \bar{O}, \forall x \in \bar{O}$,
Menaldi, Robin (1985) proved that equation

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}+\int_{\mathbb{R}^{d} \backslash\{0\}} \gamma\left(X_{t-}, z\right) d \tilde{N}_{t}(d z)-d K_{t},
$$

where K is the reflecting process of X on the boundary of O, admits a unique solution with given initial starting point $x \in \bar{O}$.

Variational inequalities

Let $\varphi: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a proper, l.s.c., convex function with $\operatorname{int}(\operatorname{Dom} \varphi) \neq \emptyset$. The subdifferential of φ is defined by

$$
\partial \varphi(x):=\left\{x^{*} \in \mathbb{R}^{n} \mid\left\langle x^{*}, y-x\right\rangle+\varphi(x) \leq \varphi(y), \forall y \in \mathbb{R}^{n}\right\} .
$$

In the case $\varphi \equiv I_{\bar{O}}: x \mapsto\left\{\begin{array}{ll}0, & x \in \bar{O} ; \\ +\infty, & x \notin \bar{O},\end{array}\right.$ the subdifferential is given by

$$
\partial I_{\bar{O}}(x)= \begin{cases}\{0\}, & x \in O ; \\ N_{\bar{O}}(x), & x \in \operatorname{bd} O ; \\ \emptyset, & x \notin \bar{O} .\end{cases}
$$

We consider the following equation

$$
\begin{equation*}
d X_{t}+\partial \varphi\left(X_{t}\right) d t \ni b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}+\int_{\mathbb{R}^{d} \backslash\{0\}} \gamma\left(X_{t-}, z\right) d \tilde{N}_{t}(d z) \tag{3}
\end{equation*}
$$

We denote by $D\left([0, T] ; \mathbb{R}^{n}\right)$ the class of \mathbb{R}^{n}-valued, càdlàg functions on $[0, T]$, endowed with the uniform convergence topology. We say that $(X, K) \in L_{\mathrm{ad}}^{2}\left(\Omega ; D\left([0, T] ; \mathbb{R}^{n}\right)\right) \times$ $L_{\mathrm{ad}}^{2}\left(\Omega ; C\left([0, T] ; \mathbb{R}^{n}\right)\right)$ is a solution of (3) if:

- $\varphi(X) \in L^{1}(\Omega \times[0, T])$;
- $K \in L^{1}\left(\Omega ; B V_{0}\left([0, T] ; \mathbb{R}^{n}\right)\right)$;
- $X_{t}+K_{t}=\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d W_{s}+\int_{0}^{t} \int_{\mathbb{R}^{d} \backslash\{0\}} \gamma\left(X_{s-}, z\right) d \tilde{N}_{s}(d z)$;
- $\int_{0}^{T}\left\langle y(r)-X_{r}, d K_{r}\right\rangle+\int_{0}^{T} \varphi\left(X_{r}\right) d r \leq \int_{0}^{T} \varphi(y(r)) d r, \forall y \in D\left([0, T] ; \mathbb{R}^{n}\right)$.

Asiminoaiei, Răşcanu (1997): case $\gamma \equiv 0$.

Theorem (Uniqueness). Under assumptions (H1), (H2), equation (3) has at most one solution starting from $x \in \operatorname{Dom} \varphi$.

For the proof, we consider two solutions (X, K) and (\tilde{X}, \tilde{K}) and apply Itô's formula to $\left|X_{t}-\tilde{X}_{t}\right|^{2}:$

$$
\begin{aligned}
& \left|X_{t}-\tilde{X}_{t}\right|^{2}+\int_{0}^{t}\left\langle X_{s}-\tilde{X}_{s}, d\left(K_{s}-\tilde{K}_{s}\right)\right\rangle \\
& =2 \int_{0}^{t}\left\langle X_{s}-\tilde{X}_{s}, b\left(X_{s}\right)-b\left(\tilde{X}_{s}\right)\right\rangle d s+2 \int_{0}^{t}\left\langle X_{s}-\tilde{X}_{s},\left[\sigma\left(X_{s}\right)-\sigma\left(\tilde{X}_{s}\right)\right] d W_{s}\right\rangle \\
& +2 \int_{0}^{t} \int_{\mathbb{R}^{d} \backslash\{0\}}\left\langle X_{s-}-\tilde{X}_{s-}, \gamma\left(X_{s-}, z\right)-\gamma\left(\tilde{X}_{s-}, z\right)\right\rangle+\left|\gamma\left(X_{s-}, z\right)-\gamma\left(\tilde{X}_{s-}, z\right)\right|^{2} d \tilde{N}_{s}(d z) \\
& +\int_{0}^{t}\left|\sigma\left(X_{s}\right)-\sigma\left(\tilde{X}_{s}\right)\right|^{2} d s+\int_{0}^{t} \int_{\mathbb{R}^{d} \backslash\{0\}}\left\langle X_{s-}-\tilde{X}_{s-}, \gamma\left(X_{s-}, z\right)-\gamma\left(\tilde{X}_{s-}, z\right)\right\rangle \nu(d z) d s
\end{aligned}
$$

For the existence result, we impose the condition $(q \geq 1)$
(H3)' $\varphi(x+\gamma(x, z)) \leq \varphi(x)+C_{\gamma}\left(1+|\gamma(x, z)|^{q}\right), \forall(x, z) \in \mathbb{R}^{n} \times\left(\mathbb{R}^{d} \backslash\{0\}\right)$.
Theorem (Existence). Under assumptions (H1), (H2)', (H3)', equation (3) has a unique solution starting from $x_{0} \in \operatorname{Dom} \varphi$.

The proof of this result uses the penalization method. We consider the Yosida regularization of φ

$$
\varphi_{\varepsilon}(x):=\inf \left\{\left.\frac{1}{2 \varepsilon}|x-y|^{2}+\varphi(y) \right\rvert\, y \in \mathbb{R}^{n}\right\}, \varepsilon>0
$$

which is a C^{1}, convex function on \mathbb{R}^{n}, with $\nabla \varphi_{\varepsilon}$ a Lipschitz function with Lipschitz constant equal to $1 / \varepsilon$. Moreover, by (H3)',

$$
\varphi_{\varepsilon}(x+\gamma(x, z)) \leq \varphi_{\varepsilon}(x)+C_{\gamma}\left(1+|\gamma(x, z)|^{q}\right)
$$

also, for simplicity, we can assume that $\varphi(x) \geq \varphi(0)=0, \forall x \in \mathbb{R}^{n}$ and $0 \in \operatorname{int}(\operatorname{Dom} \varphi)$.
We consider the jump-diffusion X^{ε} given by

$$
d X_{t}^{\varepsilon}+\nabla \varphi_{\varepsilon}\left(X_{t}^{\varepsilon}\right) d t=b\left(X_{t}^{\varepsilon}\right) d t+\sigma\left(X_{t}^{\varepsilon}\right) d W_{t}+\int_{\mathbb{R}^{d} \backslash\{0\}} \gamma\left(X_{t-}^{\varepsilon}, z\right) d \tilde{N}_{t}(d z)
$$

We will show that X^{ε} and $K_{t}^{\varepsilon}:=\int_{0}^{t} \nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right) d s$ converge to X and K.

I. Boundedness of $\left(X^{\varepsilon}\right)$ and $\left(K^{\varepsilon}\right)$

Itô's formula for $\left|X_{t}^{\varepsilon}\right|^{2}$

$$
\begin{aligned}
\left|X_{t}^{\varepsilon}\right|^{2} & +2 \int_{0}^{t}\left\langle X_{s}^{\varepsilon}, \nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\right\rangle d s=\left|x_{0}\right|^{2}+\int_{0}^{t}\left[2\left\langle X_{s}^{\varepsilon}, b\left(X_{s}^{\varepsilon}\right)\right\rangle+\left|\sigma\left(X_{s}^{\varepsilon}\right)\right|^{2}\right] d s \\
& +\int_{0}^{t} \int_{\mathbb{R}^{d} \backslash\{0\}}\left|\gamma\left(X_{s}^{\varepsilon}, z\right)\right|^{2} \nu(d z) d s+2 \int_{0}^{t}\left\langle X_{s}^{\varepsilon}, \sigma\left(X_{s}^{\varepsilon}\right) d W_{s}\right\rangle \\
& +\int_{0}^{t} \int_{\mathbb{R}^{d} \backslash\{0\}}\left[\left|X_{s-}^{\varepsilon}+\gamma\left(X_{s-}^{\varepsilon}, z\right)\right|^{2}-\left|X_{s-}^{\varepsilon}\right|^{2}\right] d \tilde{N}_{s}(d z) .
\end{aligned}
$$

We obtain, since $\varphi_{\varepsilon}(x) \leq\left\langle\nabla \varphi_{\varepsilon}(x), x\right\rangle, \forall x \in \mathbb{R}^{n}$,

$$
\mathbb{E} \sup _{t \in[0, T]}\left|X_{t}^{\varepsilon}\right|^{4} \vee \mathbb{E}\left(\int_{0}^{T} \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right) d s\right)^{2} \leq C\left(1+\left|x_{0}\right|^{4}\right) .
$$

Also, $\exists r_{0}>0, \exists M_{0}>0: r_{0}\left|\nabla \varphi_{\varepsilon}(x)\right| \leq\left\langle x, \nabla \varphi_{\varepsilon}(x)\right\rangle+M_{0}, \forall x \in \mathbb{R}^{n}$; it follows that

$$
\mathbb{E}\left\|K^{\varepsilon}\right\|_{B V\left([0, T] ; \mathbb{R}^{n}\right)}^{2}=\mathbb{E}\left(\int_{0}^{T}\left|\nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\right| d s\right)^{2} \leq C\left(1+\left|x_{0}\right|^{4}\right) .
$$

II. Estimate for $\mathbb{E}\left[\sup _{t \in[0, T]}\left|\nabla \varphi_{\varepsilon}\left(X_{t}^{\varepsilon}\right)\right|^{4}\right]$

Itô's formula for $\varphi_{\varepsilon}^{2}\left(X_{t}^{\varepsilon}\right)$:

$$
\begin{aligned}
\varphi_{\varepsilon}^{2}\left(X_{t}^{\varepsilon}\right) & +\int_{0}^{t} \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\left|\nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\right|^{2} d s \leq \varphi_{\varepsilon}\left(x_{0}\right)^{2}+2 \int_{0}^{t} \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\left\langle\nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right), b\left(X_{s}^{\varepsilon}\right)\right\rangle d s \\
& +\int_{0}^{t}\left|\nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\right|^{2}\left|\sigma\left(X_{s}^{\varepsilon}\right)\right|^{2} d s+\frac{1}{\varepsilon} \int_{0}^{t} \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\left|\sigma\left(X_{s}^{\varepsilon}\right)\right|^{2} d s \\
& +\int_{0}^{t} \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\left\langle\nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right), \sigma\left(X_{s}^{\varepsilon}\right) d W_{s}\right\rangle \\
& +\int_{0}^{t} \int_{\mathbb{R}^{d} \backslash\{0\}} \mathcal{D}_{\varphi_{\varepsilon}^{2}}^{0}\left(X_{s-}^{\varepsilon} ; \gamma\left(X_{s-}^{\varepsilon}, z\right)\right) d \tilde{N}_{s}(d z) \\
& +\int_{0}^{t} \int_{\mathbb{R}^{d} \backslash\{0\}} \mathcal{D}_{\varphi_{\varepsilon}^{2}}^{1}\left(X_{s}^{\varepsilon} ; \gamma\left(X_{s}^{\varepsilon}, z\right)\right) \nu(d z) d s
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{D}_{f}^{0}(x ; a): \\
& \mathcal{D}_{f}^{1}(x ; a)
\end{aligned}:=f(x+a)-f(x) ; ~=f(x+a)-f(x)-\langle\nabla f(x), a\rangle .
$$

We have, since $\left|\nabla \varphi_{\varepsilon}(x)\right|^{2} \leq \frac{2}{\varepsilon} \varphi_{\varepsilon}(x), \forall x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\left|\mathcal{D}_{\varphi_{\varepsilon}^{2}}^{0}\left(X_{s-}^{\varepsilon} ; \gamma\left(X_{s-}^{\varepsilon}, z\right)\right)\right| & \leq \sup _{\mu \in[0,1]} 2\left|\nabla \varphi_{\varepsilon}\left(X_{s-}^{\varepsilon}+\mu \gamma\left(X_{s-}^{\varepsilon}, z\right)\right)\right|\left|\varphi_{\varepsilon}\left(X_{s-}^{\varepsilon}+\mu \gamma\left(X_{s-}^{\varepsilon}, z\right)\right)\right|\left|\gamma\left(X_{s-}^{\varepsilon}, z\right)\right| \\
& \leq \frac{2 \sqrt{2}}{\varepsilon^{1 / 2}} \sup _{\mu \in[0,1]}\left|\varphi_{\varepsilon}\left(X_{s-}^{\varepsilon}+\mu \gamma\left(X_{s-}^{\varepsilon}, z\right)\right)\right|^{3 / 2}\left|\gamma\left(X_{s-}^{\varepsilon}, z\right)\right| \\
& \left.\leq \frac{2 \sqrt{2}}{\varepsilon^{1 / 2}}\left|\left[\varphi_{\varepsilon}\left(X_{s-}^{\varepsilon}\right)+C\left(1+\left|\gamma\left(X_{s-}^{\varepsilon}, z\right)\right|^{q}\right)\right]^{3 / 2}\right| \gamma\left(X_{s-}^{\varepsilon}, z\right) \right\rvert\, \\
\left|\mathcal{D}_{\varphi_{\varepsilon}^{2}}^{1}\left(X_{s}^{\varepsilon} ; \gamma\left(X_{s}^{\varepsilon}, z\right)\right)\right| & \leq\left(\sup _{\mu \in[0,1]}\left[\left|\nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}+\mu \gamma\left(X_{s-}^{\varepsilon}, z\right)\right)\right|^{2}\right]+\frac{1}{\varepsilon} \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\right)\left|\gamma\left(X_{s-}^{\varepsilon}, z\right)\right|^{2} \\
& \leq \frac{2}{\varepsilon} \sup _{\mu \in[0,1]}\left[\varphi_{\varepsilon}\left(X_{s}^{\varepsilon}+\mu \gamma\left(X_{s-}^{\varepsilon}, z\right)\right)\right]\left|\gamma\left(X_{s-}^{\varepsilon}, z\right)\right|^{2} \\
& \leq \frac{2}{\varepsilon}\left[\varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)+C\left(1+\left|\gamma\left(X_{s-}^{\varepsilon}, z\right)\right|^{q}\right)\right]\left|\gamma\left(X_{s-}^{\varepsilon}, z\right)\right|^{2}
\end{aligned}
$$

This will give the following estimate:

$$
\mathbb{E}\left[\sup _{t \in[0, T]}\left|\nabla \varphi_{\varepsilon}\left(X_{t}^{\varepsilon}\right)\right|^{4}\right] \leq \frac{C}{\varepsilon^{7 / 2}}\left(1+\left|x_{0}\right|^{q^{\prime}}+\varphi\left(x_{0}\right)^{2}\right) .
$$

III. Cauchy sequences argument

Itô's formula for $\left|X^{\varepsilon}-X^{\delta}\right|^{2}$:

$$
\begin{aligned}
& \left|X_{t}^{\varepsilon}-X_{t}^{\delta}\right|^{2}+2 \int_{0}^{t}\left\langle X_{s}^{\varepsilon}-X_{s}^{\delta}, \nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)-\nabla \varphi_{\delta}\left(X_{s}^{\delta}\right)\right\rangle d s \\
& =\int_{0}^{t}\left[2\left\langle X_{s}^{\varepsilon}-X_{s}^{\delta}, b\left(X_{s}^{\varepsilon}\right)-b\left(X_{s}^{\delta}\right)\right\rangle+\left|\sigma\left(X_{s}^{\varepsilon}\right)-\sigma\left(X_{s}^{\delta}\right)\right|^{2}\right] d s \\
& +\int_{0}^{t} \int_{\mathbb{R}^{d} \backslash\{0\}}\left|\gamma\left(X_{s}^{\varepsilon}, z\right)-\gamma\left(X_{s}^{\delta}, z\right)\right|^{2} \nu(d z) d s \\
& +2 \int_{0}^{t}\left\langle X_{s}^{\varepsilon}-X_{s}^{\delta},\left(\sigma\left(X_{s}^{\varepsilon}\right)-\sigma\left(X_{s}^{\delta}\right)\right) d W_{s}\right\rangle \\
& +\int_{0}^{t} \int_{\mathbb{R}^{d} \backslash\{0\}}\left[\left|X_{s-}^{\varepsilon}-X_{s-}^{\delta}+\gamma\left(X_{s-}^{\varepsilon}, z\right)-\gamma\left(X_{s-}^{\delta}, z\right)\right|^{2}-\left|X_{s-}^{\varepsilon}-X_{s-}^{\delta}\right|^{2}\right] d \tilde{N}_{s}(d z) .
\end{aligned}
$$

We use the fact that

$$
\left\langle\nabla \varphi_{\varepsilon}(x)-\nabla \varphi_{\delta}(y), x-y\right\rangle \geq-(\varepsilon+\delta)\left\langle\nabla \varphi_{\varepsilon}(x), \nabla \varphi_{\delta}(y)\right\rangle
$$

to obtain that $\mathbb{E} \sup _{t \in[0, T]}\left|X_{t}^{\varepsilon}-X_{t}^{\delta}\right|^{4} \rightarrow 0$ as $\delta, \varepsilon \rightarrow 0$ and $\mathbb{E} \sup _{t \in[0, T]}\left|K_{t}^{\varepsilon}-K_{t}^{\delta}\right|^{2} \rightarrow 0$.

IV. Passing to the limit

There exist $X \in L_{\mathrm{ad}}^{4}\left(\Omega ; D\left([0, T] ; \mathbb{R}^{n}\right)\right)$ and $K \in L_{\mathrm{ad}}^{2}\left(\Omega ; C\left([0, T] ; \mathbb{R}^{n}\right)\right)$ such that

$$
\mathbb{E} \sup _{t \in[0, T]}\left[\left|X_{t}^{\varepsilon}-X_{t}\right|^{4}+\left|K_{t}^{\varepsilon}-K_{t}\right|^{2}\right] \rightarrow 0
$$

Since $\left(K^{\varepsilon}\right)$ is also bounded in $L^{2}\left(\Omega ; B V_{0}\left([0, T] ; \mathbb{R}^{n}\right)\right)$, it converges weakly to K. It is now a standard argument to show that (X, K) is a solution of equation (3).

References

[1] I. Asiminoaiei et A. Răşcanu, Approximation and simulation of stochastic variational inequalities - splitting up method, Numer. Funct. Anal. and Optimiz. 18 (1997), no. 3\&4, 251-282.
[2] Bertoin, J., 1996, Lévy Processes (Cambridge University Press).
[3] E. Cépa, Equations différentielles stochastiques multivoques, Thèse, l'Université d'Orléans, 1994.
[4] Gihman, I. and Skorohod, A.V., 1972, Stochastic Differential Equations (Berlin: SpringerVerlag).
[5] Menaldi, J.-L. and Robin, M. Reflected Diffusion Processes with Jumps, Ann. Probab. Volume 13, Number 2 (1985), 319-341.
[6] Jacod, J., 1979, Calcul Stochastique et Problèmes de Martingales, Lecture Notes in Math., 714 (Berlin: Springer-Verlag).
[7] P. Protter, Stochastic integration and differential equations: A new approach, Applications of Mathematics, no. 21, Springer-Verlag, 1990.

Thank you for your attention!

